Quantum Integral Inequalities of Simpson-Type for Strongly Preinvex Functions
نویسندگان
چکیده
منابع مشابه
New integral inequalities for $s$-preinvex functions
In this note, we give some estimate of the generalized quadrature formula of Gauss-Jacobi$$underset{a}{overset{a+eta left( b,aright) }{int }}left( x-aright)^{p}left( a+eta left( b,aright) -xright) ^{q}fleft( xright) dx$$in the cases where $f$ and $left| fright| ^{lambda }$ for $lambda >1$, are $s$-preinvex functions in the second sense.
متن کاملSome Integral Inequalities of Hermite-Hadamard Type for Multiplicatively s-Preinvex Functions
In this paper, we establish integral inequalities of Hermite-Hadamard type for multiplicativelys-preinvex functions. We also obtain some new inequalities involving multiplicative integralsby using some properties of multiplicatively s-preinvex and preinvex functions.
متن کاملSome Integral Inequalities of Simpson Type for Strongly Extended s-Convex Functions
The main purpose of this survey paper is to point out some very recent developments on Simpson’s inequality for strongly extended s-convex function. Firstly, the concept of strongly extended s-convex function is introduced. Next a new identity is also established. Finally, by this identity and Hölder’s inequality, some new Simpson type for the product of strongly extended s-convex function are ...
متن کاملSome integral inequalities of Simpson type for GA-"-convex functions
We introduce a new concept “GA-"-convex function” and establish some inteNote 1: Red parts indicate major changes. Please check them carefully. gral inequalities of Simpson type for GA-"-convex functions.
متن کاملOstrowski type inequalities for functions whose derivatives are preinvex
In this paper, making use of a new identity, we establish new inequalities of Ostrowski type for the class of preinvex functions and gave some midpoint type inequalities.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2019
ISSN: 2227-7390
DOI: 10.3390/math7080751